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1. pp-waves

pp-wave geometries are an interesting family of essentially non-linear solutions of general

relativity containing arbitrary functions of space-time coordinates and describing propaga-

tion of strong gravitational waves in space-time. Their importance extends beyond classical

general relativity, since, in a large class of quantum gravitational theories (including per-

turbative string theories), they turn out to be unaffected by quantum corrections (see [1]

and references therein). Furthermore, the presence of a light-like Killing vector in these

backgrounds permits both a formulation of the matrix theory and an analytic solution of

string theory sigma-models in the light-cone gauge.

It is interesting to consider the limit whereby the arbitrary functions contained in the

pp-wave solutions develop isolated singularities. The corresponding light-like singularities

in space-time geometry are reminiscent (even though different) from (space-like) cosmolog-

ical singularities. Furthermore, the special standing of pp-waves in quantum gravitational

theories makes these geometries a fruitful playground for studying quantum gravity in

extreme high-curvature regime, and, in particular, exploring the possibilities to define dy-

namical transitions through space-time singularities.

In this note, we shall concentrate on the following class of simple pp-wave geometries:

ds2 = −2dX+ dX− − λF (X+, ε)X2(dX+)2 + dX2, (1.1)

where F (X+, ε) is an arbitrary function developing a singularity at X+ = 0 when ε is sent

to 0 and λ is a number (the overall pp-wave profile normalization). We shall formally work

in three space-time dimensions, but our derivations can be immediately extended to higher

dimensions by replacing dX2 with dXidXi. We shall assume that F does not depend on
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any dimensional parameters besides ε, in which case the ε → 0 limit is scale-invariant, and

on dimensional grounds, one can write F as

F (X+, ε) =
1

ε2
Ω(X+/ε). (1.2)

Note that even though all our considerations will, strictly speaking, apply only to this

“scale-invariant” case, one should expect that even if F depends on other dimensional

parameters, at least in some cases, they should not affect the existence of the limit. Indeed,

the singularity transition takes place in an ε-neighborhood of X+ = 0 and it should not be

particularly sensitive to dimensional parameters that stay finite as ε is taken to 0.

The case of F (X+, ε) ∼ (1/X+)2 has been previously studied1 in [2]. However, our

approach will be quite different, as we shall be considering the singular case as a limit of

regularized geometries (rather than devising singularity transition recipes for the singular

case itself). The motivation for this approach is that if the background (1.1) is used in the

context of perturbative string theory (and related approaches to quantum gravity), it must

satisfy Einstein’s equations (when those are exact, or else an appropriate generalization

thereof), and this can only be ensured by working with a regularized space and taking an

ε → 0 limit in the end. Remarkably, it is precisely this limiting procedure that will be

responsible for the emergence of discrete structures we are aiming to report.

We intend to study the wave equation for a free scalar field in the background (1.1).

Whereas the wave equation itself does not describe the physical evolution on strongly curved

spaces adequately, its solutions, the mode functions, are essential ingredients of any field-

theoretical or string-theoretical set-up formulated in the background (1.1). Likewise, we

shall not discuss how the scalar field should be coupled to the dilaton or p-form potentials

necessary to make the metric (1.1) satisfy Einstein’s equations [2], and we shall assume that

the scalar field is minimally coupled to the metric. One can hope that the robustness and

genericity of the features we observe will make them survive at least for some modifications

and extensions2 of our present set-up. Our main observation will be that the ε → 0 limit

of the solutions to the wave equation in the background (1.1) with initial data specified

away from the singularity typically exist only for discrete values of the parameter λ and

only if the leading asymptotics of Ω in (1.2) are the same for X+ going to +∞ and −∞.

(The discreteness has been observed for a special class of pp-waves in [5], and our present

objective is to show its generic nature.)

2. The wave equation

In the background (1.1), the Klein-Gordon wave equation takes the form

∂+∂−φ − 1

2
∂2

Xφ − λ

2
F (X+, ε)X2 ∂2

−φ +
m2

2
φ = 0, (2.1)

1 Such scale-invariant (1/X+)2 dependencies of the pp-wave profile arise as Penrose limits of a broad

class [3] of power-law space-time singularities (including the common singularities encountered in cos-

mology). This observation suggests (though not in a conclusive way) that it is natural to resolve such

singularities in the scale-invariant fashion of (1.2).
2One natural problem to analyze is the evolution of a free quantum string in such regularized pp-waves

and its singular limit [4] (see, e.g., [2] for related earlier work).
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or, after Fourier-transforming,

φ(X+,X−,X) =
1√
2π

∫

dk−φk−
(X) exp(ik−X−), (2.2)

it can be re-written in the form

−iφ̇ = −∂2
Xφ

2k−
+

λk−
2

F (X+, ε)X2φ +
m2

2k−
φ (2.3)

(where the dot denotes the X+-derivative, and we have suppressed the k− index on φ).

The latter representation makes it manifest that the wave equation in pp-wave backgrounds

takes the form of a Schrödinger equation (a well known fact, see for example [2]).

A general overview of singular limits in time-dependent Schrödinger equations, such as

the ε → 0 limit in (2.3), has been given in section 2 of [5]. It has been noted in particular

that, if the Schrödinger equation possesses a finite-dimensional dynamical group, it reduces

to a finite number of ordinary differential equations, which considerably simplifies the

analysis of the singular limit. The equation (2.3) presents a particularly straightforward

realization of this structure, since it is a Schrödinger equation for a linear quantum system,

and as such, it can be reduced to ordinary differential equations (“classical equations of

motion”) using the standard WKB techniques.

More specifically, one proceeds as follows. The formal “Hamiltonian” corresponding

to (2.3) is

H =
P 2

2k−
+

λk−
2

F (t, ε)X2 +
m2

2k−
(2.4)

(where X+ has been renamed to t in order to make the “quantum-mechanical” consider-

ations look more familiar). Note that (2.4) is nothing but the Hamiltonian of a harmonic

oscillator with a time-dependent frequency. The “Schrödinger” equation (2.3) is then solved

by the ansatz

φ(X1, t1|X2, t2) = A(t1, t2) exp (−iScl [X1, t1|X2, t2]) , (2.5)

where t2 should be identified with X+ of (2.3), if

Scl =

∫ t2

t1

dt
(

PẊ −H
) ∣

∣

∣

X=Xcl(X1,t1|X2,t2)
(2.6)

−2k−
∂A(t1, t)

∂t
= A(t1, t)

∂2Scl [X1, t1|X, t]

∂X2
(2.7)

Here, Scl is the “classical action” for the solution satisfying X(t1) = X1, X(t2) = X2.

More general solutions to (2.3) are obtained by integrating (2.5) over X1, weighted by an

arbitrary smooth wavepacket.

The classical equation of motion corresponding to (2.4) is

Ẍ + λF (t, ε)X = 0 (2.8)
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Given two independent solutions to this equation, f(t) and h(t), one can straightforwardly

construct the solution Xcl(X1, t1|X2, t2) satisfying X(t1) = X1, X(t2) = X2, and subse-

quently evaluate the action (2.6):

Scl = −k−
2

h2ḟ1 − f2ḣ1

f1h2 − h1f2
X2

1 +
k−
2

f1ḣ2 − h1ḟ2

f1h2 − h1f2
X2

2 − k−
W [f, h]

f1h2 − h1f2
X1X2 −

m2

2k−
(t2 − t1),

(2.9)

where W [f, h] = fḣ−hḟ is the Wronskian of f(t) and h(t) (independent of t), and we have

introduced f1 = f(t1), h2 = h(t2), etc.

With the above form of Scl, (2.7) reduces to

∂A(t1, t)

∂t
= −1

2

f1ḣ − h1ḟ

f1h − h1f
A(t1, t), (2.10)

which can be solved as

A(t1, t2) =
N√

f1h2 − h1f2
, (2.11)

with a normalization constant N . Depending on how the solutions to the wave equa-

tion are to be used, different normalizations can be chosen. This ambiguity will not be

relevant for our considerations, and it will be convenient to think of N as being propor-

tional to
√

W [f, h], which makes independence on the normalization of f and h manifest.3

We thus arrive at the following complete basis of solutions (labelled by X1) to the wave

equation (2.3):

φ ∼ 1
√

C(t1, t2)
exp

(

ik−∂t1C
2C X2

1 − ik−∂t2C
2C X2

2 +
ik−
C X1X2 +

im2

2k−
(t2 − t1)

)

, (2.12)

where we have introduced the “compression factor”

C(t1, t2) =
f(t1)h(t2) − h(t1)f(t2)

W [f, h]
. (2.13)

Note that C(t1, t2) depends only on equation (2.8) and not on the choice of solutions f and

h. Indeed, if one changes to a different solution basis
(

f̃

h̃

)

= A

(

f

h

)

, (2.14)

both numerator and denominator of (2.12) are multiplied by detA. This property of

C(t1, t2) makes it obvious that (2.12) is independent of the choice of f and h, as it should

be. (Zeros of C(t1, t2) correspond to focal points of the equation (2.8), see appendix B

of [5] for further details.) As a matter of fact, C(t1, t2) can be recognized as a solution

(with respect to t2) to (2.8) satisfying initial conditions

C(t1, t2)
∣

∣

∣

t2=t1
= 0, ∂t2C(t1, t2)

∣

∣

∣

t2=t1
= 1. (2.15)

3The choice of the branch structure of the square root in (2.11) is somewhat subtle but completely

unambiguous and is given by the so called Maslov phase prescription. We shall refer the reader to appendix

B of [5] for further details, which will not be relevant as far as our present goals are concerned.
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3. The singular limit

The representation (2.12) for a complete basis of solutions to the wave equation (2.1)

derived in the previous section is relevant for our present goals inasmuch as it relates

our original problem to a simple ordinary differential equation (2.8). In particular, the

existence of an ε → 0 limit4 to (2.1) can be completely analyzed in terms of a single

solution(2.15) to (2.8). (Note however, that if the ε → 0 limit of (2.15) exists for all t1, the

limit will exist for solutions satisfying arbitrary initial conditions. This follows from the

fact that ∂t1C(t1, t2) satisfies initial conditions linearly independent of (2.15). The converse

is also obviously true.) In this section, we shall analyze the ε → 0 limit of C(t1, t2) for

the special (“scale-invariant”) case of (1.2). We shall observe that the limit exists only for

discrete values of the overall normalization of the pp-wave profile, and only if the leading

asymptotics of Ω of (1.2) is the same for its argument going to plus and minus infinity.

3.1 Scaling

For the particular pp-wave given by (1.1)–(1.2), the “classical equation of motion” (2.8)

takes the form

Ẍ +
λ

ε2
Ω(t/ε)X = 0, (3.1)

and, as explained above, we are interested in the limiting behavior of the solution satisfying

X(t1) = 0, Ẋ(t1) = 1 (3.2)

as ε is taken to 0.

The scaling properties of (1.2) permit rewriting this equation in a dimensionless form

with η = t/ε, Y (η) = X(εη):

Y ′′ + λΩ(η)Y = 0, Y |η=t1/ε = 0, Y ′|η=t1/ε = ε, (3.3)

and, in this representation, one should be looking for an ε → 0 limit of Y (t/ε).

Note that the differential equation (3.3) is itself ε-independent, and the ε → 0 limit

has been translated into specifying initial conditions in the infinite past (we are assuming

t1 to be negative), while “observing” the results of the evolution at the point t/ε in the

infinite future. In other words, the requirement that an ε → 0 limit should exist has

been translated into some constraints on the asymptotic behavior of solutions to an ε-

independent differential equation. This latter formulation has a conspicuous flavor of a

Sturm-Liouville problem, which makes the appearance of a discrete spectrum for λ hardly

surprising. We shall see how this works out explicitly, after considering the asymptotic

behavior of solutions to (3.3).

4We are speaking of an ε → 0 limit corresponding to a meaningful dynamical evolution across the

singularity. The typical situation is that C(t1, t2) blows up for t1 < 0, t2 > 0 in the ε → 0 limit, i. e., the

harmonic oscillator (2.8) is knocked out to infinity by the singular potential. In this case, the ε → 0 limit

of (2.12) exists in the mathematical sense, and is φ(t2) = 0 for t2 > 0. This limit is, of course, completely

meaningless as far as defining dynamical evolution across the singularity is concerned, and we refer to this

situation as having no ε → 0 limit.

– 5 –
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3.2 Asymptotics

For the particular choices of Ω(η) we intend to consider, analyzing the asymptotic behavior

of solutions to (3.3) is greatly simplified by the following lemma:

If the equation

Y ′′ + Ω(η)Y = 0 (3.4)

has solutions that behave for large η as5

Y1(η) ∼ ηa + o(ηa), Y2(η) ∼ η1−a + o(η1−a) (3.5)

with a > 1/2, then the equation

Ỹ ′′ +
(

Ω(η) + o(1/ηb)
)

Ỹ = 0 (3.6)

with b > 2 has solutions with the same asymptotic behavior.

(We shall be using the standard o- and O-symbols to describe the asymptotic behavior of

our functions. f(x) is said to be o(g(x)) at x = x̄ if the limit of f(x)/g(x) at x = x̄ is 0,

and O(g(x)) if the limit is finite.)

For the sake of brevity of notation, we shall phrase the proof for the asymptotics at

η = +∞. Take any solution to (3.6) and write it in the form

Ỹ (η) = ξ(η)Y (η), (3.7)

where Y (η) is the solution to (3.4) satisfying

Y (η0) = Ỹ (η0), Y ′(η0) = Ỹ ′(η0) (3.8)

for some positive η0. Then ξ(η) is a continuous function satisfying

ξ′′ + 2
Y ′

Y
ξ′ + o(1/ηb)ξ = 0, ξ(η0) = 1, ξ′(η0) = 0, (3.9)

which can be rewritten as

η−2a
(

η2aξ′
)′

= o(1/η)ξ′ + o(1/ηb)ξ (3.10)

(we have assumed that Y (η) displays the dominant asymptotic ta, rather than the sub-

dominant asymptotic t1−a, which should be generically possible to achieve for any Ỹ (η) by

choosing η0).

Let η∗ be the first η > η0 for which |ξ′(η)| = Aη−c, with 1 < c < min(2a, b − 1) and

some positive constant A (if no such η∗ exists, one can skip to (3.15) without any further

considerations). Note that, by construction,

|ξ′(η)| < Aη−c, |ξ(η)| < 1 +
A

(c − 1)ηc−1
0

, for η0 < η < η∗. (3.11)

5The relation between the powers of η in Y1 and Y2 is dictated by the conservation of the Wronskian.

See also the discussion below (3.15).
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One can integrate (3.10) from η = η0 to η = η∗ to obtain

∣

∣η2a
∗ ξ′(η∗)

∣

∣ ≤ A
∣

∣

∣
o(η2a−c)|η=η∗

η=η0

∣

∣

∣
+

(

1 +
A

(c − 1)ηc−1
0

)

∣

∣

∣
o(η2a−b+1)|η=η∗

η=η0

∣

∣

∣
, (3.12)

which can be rewritten as (all the o-symbols are taken to be positive)

η2a−c
∗ ≤

(

o(η2a−c
∗ ) + o(η2a−c

0 )
)

+

(

1

A
+

1

(c − 1)ηc−1
0

)

(

o(η2a−b+1
∗ ) + o(η2a−b+1

0 )
)

(3.13)

or

1 ≤
(

o(η2a−c
∗ )

η2a−c
∗

+

(

η0

η∗

)2a−c o(η2a−c
0 )

η2a−c
0

)

+

(

1

A
+

1

(c − 1)ηc−1
0

)

(

o(η2a−b+1
∗ )

η2a−c
∗

+

(

η0

η∗

)2a−c o(η2a−b+1
0 )

η2a−c
0

)

.

(3.14)

Since the right-hand side goes to 0 if η∗ and η0 go to infinity with η∗ > η0 and 1 < c <

min(2a, b−1) (as originally specified), it is possible to choose η0 and A (independent of η0)

in such a way that, for all η∗ > η0, the inequality is not satisfied. Then no η∗ (as defined

above) exists, and instead of (3.11), one has

|ξ′(η)| < Aη−c, for η > η0. (3.15)

Since c > 1, this implies that ξ(η) goes to a (generically non-zero) constant at infinity,6

and the leading asymptotics of the solution Ỹ (η) is the same (up to a constant factor) as

the leading asymptotics of Y (η).

The existence and asymptotic behavior of the “subdominant” (η1−a) solution can be

inferred from the following consideration. The leading solution of (3.6) that we have just an-

alyzed does not oscillate as η goes to +∞. Hence, the equation (3.6) itself is non-oscillatory

at η = +∞ (see [6] for the relevant definitions and properties). Thus, it must have a so-

lution (unique up to a constant) that grows slower than ηa at infinity (the “principal”

solution), and by conservation of the Wronskian [6], this solution is

Ỹ2(η) ∼ Ỹ1(η)

+∞
∫

η

dη̃

Ỹ 2
1 (η̃)

, (3.16)

with Ỹ1 being a dominant (“non-principal”) solution to (3.6). Since the asymptotic behavior

of Ỹ1 has been established as

Ỹ1(η) ∼ ηa + o(ηa), (3.17)

together with (3.16), this gives

Ỹ2(η) ∼ η1−a + o(η1−a). (3.18)

This concludes the proof of the lemma.

6Since |ξ(η) − 1| < A/(c − 1)ηc−1

0 with A independent of η0, one can always avoid the vanishing of ξ(η)

at infinity by choosing a sufficiently large value of η0.

– 7 –



J
H
E
P
0
9
(
2
0
0
8
)
1
0
5

3.3 Specific cases

Armed with the asymptotic behavior lemma, we can analyze the singular limit for specific

pp-waves of interest. Namely, we shall assume that Ω of (1.2) behaves as

Ω(η) =
k±
η2

+ O(1/ηb) (3.19)

for η going to ±∞ (respectively), for some constants k± and b > 2.

We shall be interested in the case 0 ≤ λk± < 1/4. For these values, on can transform

to the so-called Rosen co-ordinates, for which the ε → 0 limit of the metric takes the form

ds2 = −dX+dX− +
(

X+
)2(1−a±)

dX2, (3.20)

with a± corresponding to X+ > 0 and X+ < 0 respectively,

a± =
1

2
+

√

1

4
− λk±. (3.21)

The metric (3.20) is somewhat reminiscent of Friedman cosmologies (and arises from those

in the Penrose limit [3]). The case 0 < λk± < 1/4 has been termed “null-cosmology”. The

case k± = 0 refers to well-localized pp-waves, and, in the ε → 0 limit, one is left with

Minkowski space everywhere away from X+ = 0, and a strong singularity at X+ = 0.

The case of the “light-like reflector plane” described in [5] falls precisely into this latter

category.

By the asymptotic behavior lemma, the equation

Y ′′ + λΩ(η)Y = 0 (3.22)

with Ω of the form (3.19) will have two solutions going as

Y1−(η) = |η|a− + o(|η|a−), Y2−(η) = |η|1−a− + o(|η|1−a−) (3.23)

for η approaching −∞, and two solutions going as

Y1+(η) = ηa+ + o(ηa+), Y2+(η) = η1−a+ + o(η1−a+) (3.24)

for η approaching +∞. The two sets of solutions are of course related:

(

Y1−

Y2−

)

= C(λ)

(

Y1+

Y2+

)

, (3.25)

where C(λ) is a 2 × 2-matrix.

Since we are interested in the evolution across the singular point t = 0, we choose an

initial time t1 < 0 and final time t2 > 0. By (2.13),

C(t1, t2) = ε
Y1−(t1/ε)Y2−(t2/ε) − Y1−(t2/ε)Y2−(t1/ε)

Wη[Y1−, Y2−]
, (3.26)

– 8 –
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where the Wronskian Wη is evaluated with respect to η. Using the asymptotic expansion

of solutions in the past and future as given above together with (3.25) and Wη[Y1−, Y2−] =

1 − 2a−, we obtain

C(t1, t2) =
C11(λ)

2a− − 1
|t1|1−a−t

a+

2 εa−−a+ +
C12(λ)

2a− − 1
|t1|1−a−t

1−a+

2 εa−+a+−1

− C21(λ)

2a− − 1
|t1|a−t

a+

2 ε1−a−−a+ − C22(λ)

2a− − 1
|t1|a−t

1−a+

2 εa+−a− .

(3.27)

We demand the ε → 0 limit of (3.27) to exist for all fixed t1 and t2. Simple inspection

shows that the leading power of ε, i.e., the one that is the most negative, occurs in the

term proportional to C21(λ), and that the associated power of ε is always negative. Thus,

if the ε → 0 limit exists, we must have

C21(λ) = 0. (3.28)

The power of ε in the term proportional to C12 is always positive, which makes it simply

vanish in the limit. Furthermore, if a+ 6= a− (i.e., k+ 6= k−), one must have either

C11(λ) = 0 (3.29)

or

C22(λ) = 0 (3.30)

(depending on the sign of a+ − a−).

Under generic conditions, (3.28) will leave only a discrete set of allowed values for λ.

Indeed, (3.28) merely states that the solution to (3.22) subdominant at η = −∞ does not

receive any admixture of the dominant solution at η = +∞, i.e. that the solution is sub-

dominant at both ±∞. This is essentially a Sturm-Liouville problem, and the appearance

of a discrete spectrum7 should be hardly surprising. A particular exactly solvable example

for this discrete spectrum (there called “light-like reflector plane”) has been given in [5].

Imposing additionally (3.29) or (3.30) would make the determinant of C(λ) vanish, in

contradiction with the conservation of the Wronskian, and hence (3.22). We thus conclude

that the ε → 0 limit will exist for the solutions of the wave equation (in the class of pp-wave

backgrounds we have been considering) if and only if λ belongs to a discrete spectrum of

values, and the leading (1/X+)2 asymptotics of the pp-wave profile are the same on the

both sides of the singularity.

4. Discreteness and matching conditions

In this note, we have considered the wave equation in families of pp-wave geometries

developing strong scale-invariant singularities in certain limits. (The requirement of scale

7When k± = 0, the subdominant solution to (3.22) is bounded at infinity. One can use the integral

representation for such bounded solutions [7] to show that the two bounded solutions at ±∞ depend

analytically on λ. The Wronskian of these two solutions (proportional to C21(λ)) is then a non-identically-

vanishing analytic function of λ. Hence its zeros, which are the solutions to (3.28), are discrete. For k± 6= 0,

some further analysis is needed to prove rigorously the discreteness of the spectrum for λ.
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invariance is quite constraining, but one may expect that some of our results will extend

to more general cases, since the presence of finite scale parameters is not likely to affect

the dynamics in an infinitesimally small singular region.)

We have observed that the singular limit of the solutions to the wave equation with

initial data specified away from the singularity exists only if:

• the absolute normalization of the pp-wave profile lies in a discrete spectrum (depen-

dent on the specific way the singularity is resolved);

• the leading (1/X+)2 asymptotics of the pp-wave profile are the same before and after

the singularity.

Even though these requirements are tremendously constraining, their predictive power is

diminished in our present setting by the complete arbitrariness of the pp-wave profiles.

One could speculate however, that if the time dependence of the pp-wave is governed by

further specifications (as it might be, for example, if the pp-wave arises as a Penrose limit

of some other geometry; see also footnote 1), the discrete features we observe will relate

the structure of the singularity to some parameters of the space-time geometry away from

the singular region.
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